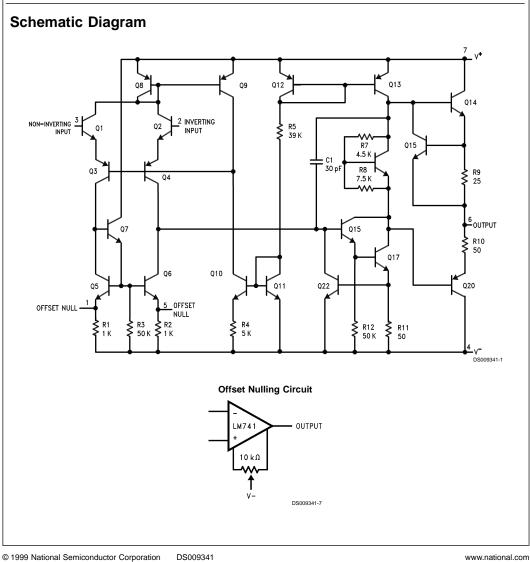
May 1998


National Semiconductor

LM741 Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

LM741 Operational Amplifier

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 6)

	LM741A	LM741E	LM741	LM741C
Supply Voltage	±22V	±22V	±22V	±18V
Power Dissipation (Note 2)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V	±30V
Input Voltage (Note 3)	±15V	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	-55°C to +125°C	0°C to +70°C	–55°C to +125°C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C	–65°C to +150°C	–65°C to +150°C	–65°C to +150°C
Junction Temperature	150°C	100°C	150°C	100°C
Soldering Information				
N-Package (10 seconds)	260°C	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C	300°C
M-Package				
Vapor Phase (60 seconds)	215°C	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C	215°C
See AN-450 "Surface Mounting Me surface mount devices.	ethods and Their Effect o	on Product Reliability" fo	or other methods of sold	lering

ESD Tolerance (Note 7)	400V	400V	400V	400V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM7	LM741A/LM741E			LM741			LM741C		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	$R_{S} \le 10 \ k\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{S} \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{S} \le 50\Omega$			4.0							mV
	$R_{S} \le 10 \ k\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	$T_A = 25^{\circ}C$		30	80		80	500		80	500	nA
	$T_{AMIN} \leq T_A \leq T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \leq T_A \leq T_{AMAX},$	0.5									MΩ
	$V_{s} = \pm 20V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

Parameter	Conditions	LM741A/LM741E		LM741			LM741C			Units	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	50									V/m∖
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				50	200		20	200		V/m\
	$T_{AMIN} \le T_A \le T_{AMAX},$										
	$R_L \ge 2 k\Omega$,										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	32									V/m\
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				25			15			V/m\
	$V_{S} = \pm 5V, V_{O} = \pm 2V$	10									V/m\
Output Voltage Swing	$V_{\rm S} = \pm 20 V$										
	$R_L \ge 10 \ k\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	$V_{\rm S} = \pm 15 V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 \ k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	$T_A = 25^{\circ}C$	10	25	35		25			25		mA
Current	$T_{AMIN} \leq T_A \leq T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \leq T_A \leq T_{AMAX}$										
Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega, V_{CM} = \pm 12 \text{V}$				70	90		70	90		dB
	$R_{S} \le 50\Omega, V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
Ratio	$V_{S} = \pm 20V$ to $V_{S} = \pm 5V$										
	$R_S \le 50\Omega$	86	96								dB
	$R_{S} \le 10 \ k\Omega$				77	96		77	96		dB
Transient Response	$T_A = 25^{\circ}C$, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 5)	T _A = 25°C	0.437	1.5								MHz
Slew Rate	$T_A = 25^{\circ}C$, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	T _A = 25°C					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_{\rm S} = \pm 20 V$		80	150							mW
	$V_{\rm S} = \pm 15 V$					50	85		50	85	mW
LM741A	$V_{s} = \pm 20V$										
	$T_A = T_{AMIN}$			165							mW
	$T_A = T_{AMAX}$			135							mW
LM741E	$V_{S} = \pm 20V$										
	$T_A = T_{AMIN}$			150							mW
	$T_A = T_{AMAX}$			150						L	mW
LM741	$V_{S} = \pm 15V$										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$					45	75				mW

· ·

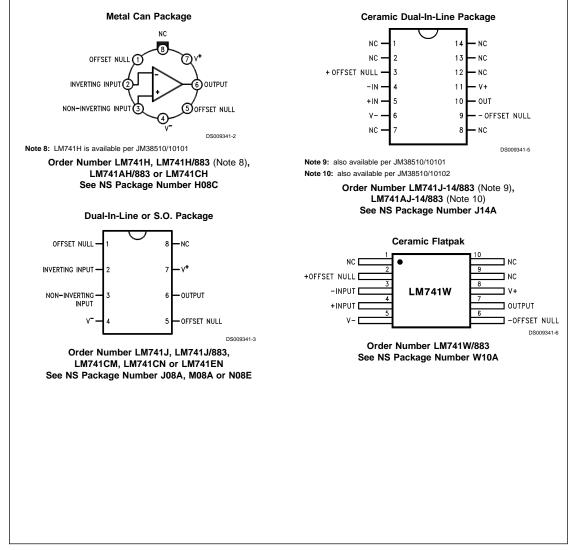
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

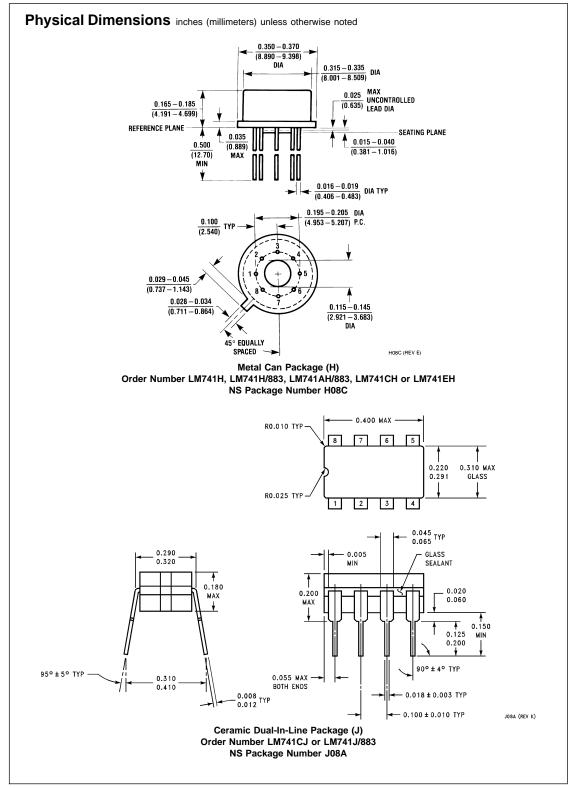
Electrical Characteristics (Note 4) (Continued)

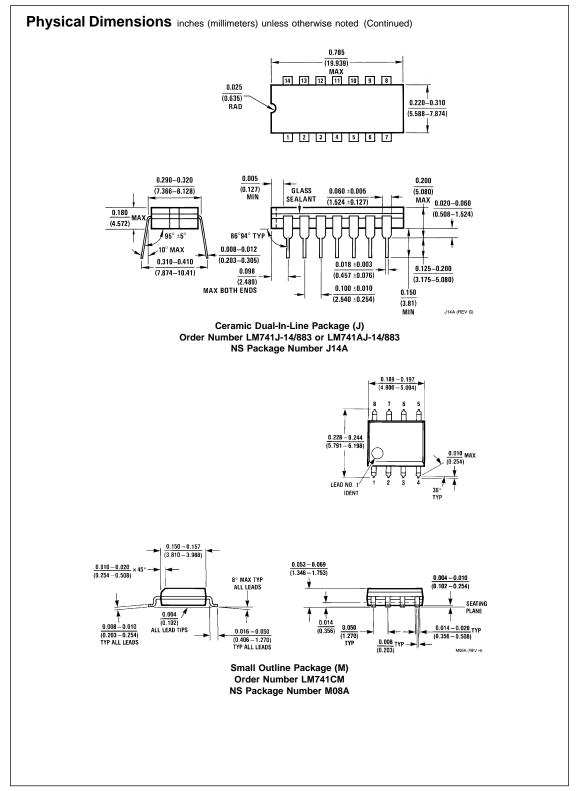
Note 2: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

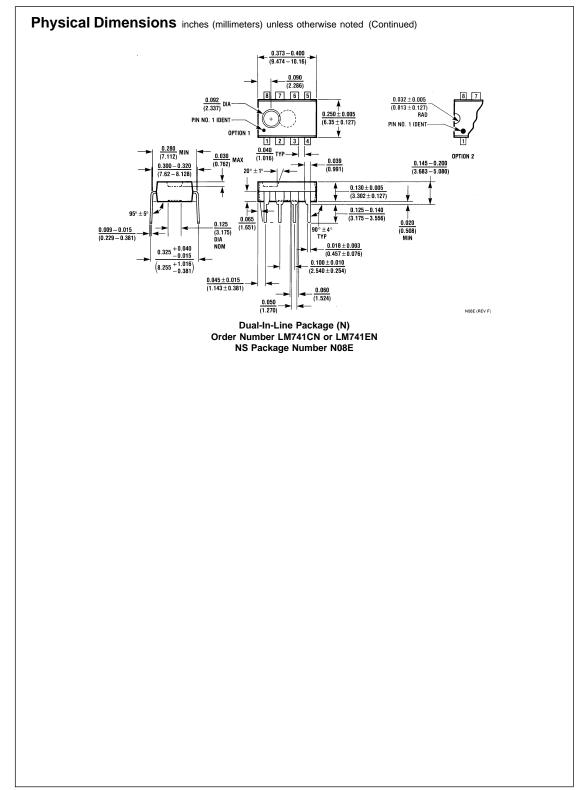
Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ_{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

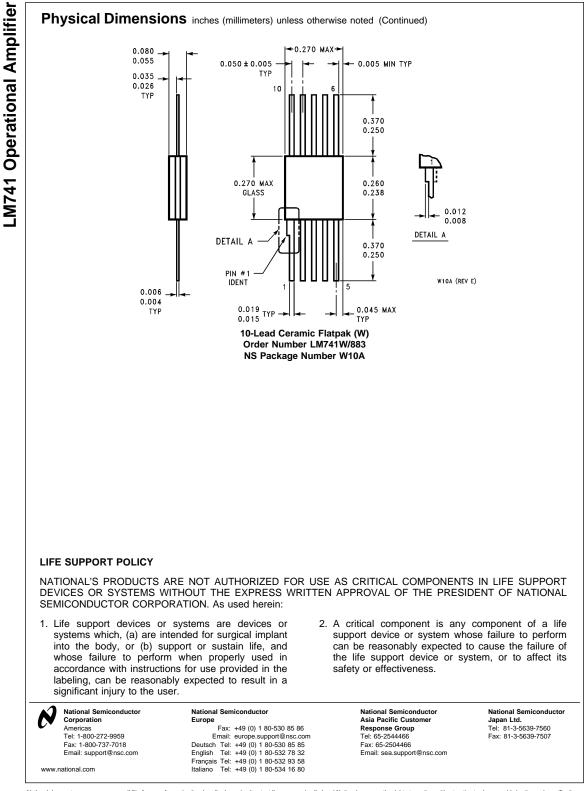
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.


Note 4: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.


Note 5: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).


Note 6: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.


Note 7: Human body model, 1.5 k Ω in series with 100 pF.


Connection Diagram

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.